
Challenges of Developing New Classes of NASA Self-Managing Missions

M. G. Hinchey, J. L. Rash, W. F. Truszkowski
NASA GSFC

Greenbelt, MD, USA
michael.g.hinchey@nasa.gov

C. A. Rouff
SAIC

McLean, VA 22102
rouffc@saic.com

R. Sterritt
University of Ulster

Northern Ireland
r.sterritt@ulster.ac.uk

Abstract

NASA is proposing increasingly complex missions that
will require a high degree of autonomy and autonomicity.
These missions pose hereto unforeseen problems and raise
issues that have not been well-addressed by the commu-
nity. Assuring success of such missions will require new
software development techniques and tools. This paper dis-
cusses some of the challenges that NASA and the rest of
the software development community are facing in devel-
oping these ever-increasingly complex systems. We give
an overview of a proposed NASA mission as well as tech-
niques and tools that are being developed to address au-
tonomic management and the complexity issues inherent in
these missions.

1 An Historic Problem

The realization that software development has lagged
greatly behind hardware is hardly a new one [2]. Brooks, in
a widely-quoted article [3], warns of complacency in soft-
ware development. He stresses that, unlike hardware de-
velopment, we cannot expect to achieve great advances in
productivity in software development unless we concentrate
on more appropriate development methods. Harel, in an
equally influential paper, written as a rebuttal to Brooks [6]
points to developments in CASE and visual formalisms [5]
as potential “bullets” (solutions).

Clearly there have been significant advances in software
engineering tools, techniques, and methods, since the time
of Brooks’ and Harel’s papers. In many cases, however,
the advantages of these developments have been mitigated
by corresponding increases in demand for greater, more
complex, functionality, stricter constraints on performance
and reaction times, and attempts to increase productivity
and reduce costs, while simultaneously pushing systems re-
quirements to their limits. NASA, for example, continues
to build more and more complex systems, with impressive
functionality, and increasingly autonomous behavior. In the
main, this is essential. NASA missions are pursuing sci-

entific discovery in ways that will require automated, au-
tonomous systems. While manned exploration missions are
clearly in NASA’s future (such as the Exploration Initia-
tive’s plans to return to the moon and put man on Mars),
for reasons we will explain below, several current and fu-
ture NASA missions necessitate autonomous behavior by
unmanned spacecraft [9].

We will describe some of the challenges for software en-
gineering emerging from new classes of complex systems
being developed by NASA and others. We will discuss
these with reference to a NASA concept mission that is ex-
emplary of many of these new systems. Then, in Section 3
we will present some techniques that we are addressing, in-
cluding autonomic management, which may contribute to
finding the Silver Bullet.

2 Challenges of Future NASA Missions

Future NASA missions will exploit new paradigms for
space exploration, heavily focused on the (still) emerging
technologies of autonomous and autonomic systems. Tra-
ditional missions, reliant on one large spacecraft, are being
replaced with missions that involve several smaller space-
craft, operating in collaboration, analogous to swarms in
nature. This offers several advantages: the ability to send
spacecraft to explore regions of space where traditional craft
simply would be impractical, greater redundancy and, con-
sequently, greater protection of assets, and reduced costs
and risk, to name but a few. Planned missions entail, for
example, the use of several unmanned autonomous vehicles
(UAVs) flying approximately one meter above the surface
of Mars, which will cover as much of the surface of Mars
in a few seconds as the now famous Mars rovers did in their
entire time on the planet.

These new approaches to exploration missions simulta-
neously pose many challenges. The missions will be un-
manned and necessarily highly autonomous. They will
also exhibit the properties of autonomic systems, be-
ing self-protecting, self-healing, self-configuring, and self-
optimizing. Many of these missions will be sent to parts



of the solar system where manned missions are simply not
possible, and to where the round-trip delay for communi-
cations to spacecraft exceeds 40 minutes, meaning that the
decisions on responses to problems and undesirable situa-
tions must be made in situ rather than from ground control
on Earth. The degree of autonomy that such missions will
possess would require a prohibitive amount of testing to en-
sure correct behavior. Furthermore, learning and continual
improvements in performance by each individual platform
will mean that emergent behavior patterns simply cannot be
fully predicted.

2.1 ANTS: A NASA Concept Mission

One of these future NASA missions is the Autonomous
Nano-Technology Swarm (ANTS) mission, which will in-
volve the launch of a swarm of autonomous pico-class (ap-
proximately 1kg) spacecraft that will explore the asteroid
belt for asteroids with certain characteristics. Figure 1 gives
an overview of the ANTS mission [17]. A transport ship,
launched from Earth, will travel to a point in space where
gravitational forces on small objects (such as spacecraft) are
all but negligible. From this point, termed a Lagrangian,
1000 spacecraft that have been assembled en route from
Earth, will be launched into the asteroid belt. Because of
the nature of the asteroid belt, spacecraft will experience a
significant risk of collision with asteroidal bodies. Further,
since the individual spacecraft have no onboard propulsion,
and can maneuver only by using solar sails, collisions be-
tween spacecraft are possible during exploration operations
around asteroids, so that 60% to 70% of them may be lost.

Because of their small size, each spacecraft will carry
just one specialized instrument for collecting a specific type
of data from asteroids in the belt. As a result, spacecraft
must cooperate and coordinate using a hierarchical social
behavior analogous to colonies or swarms of insects, with
some spacecraft directing others. To implement this mis-
sion, a heuristic approach is being considered that provides
for a social structure based on the notion of a hierarchy
among the spacecraft. Artificial intelligence technologies
such as genetic algorithms, neural nets, fuzzy logic and on-
board planners are being investigated to assist the mission
to maintain a high level of autonomy. Crucial to the mission
will be the ability to modify its operations autonomously to
reflect the changing nature of the mission and the distance
and low bandwidth communications back to Earth.

2.2 Problematic Issues

2.2.1 Size and Complexity

While the use of a swarm of miniature spacecraft is es-
sential for the success of ANTS (by enabling many points
of simultaneous observation and data collection), it also

2

Lagrangian point
habitat

Earth

Asteroid belt

Asteroid(s)

3

4 5

Rulers

Workers Messengers

Workers Workers

Messenger
X-ray worker

Mag worker

IR
worker

1

Figure 1. NASA’s Autonomous Nano Technol-
ogy Swarm (ANTS) mission scenario.

poses several problems in terms of adding significantly to
the complexity of the mission. The mission will launch
1000 pico-class spacecraft. Even with a possible loss rate of
60% to 70%, we expect to have several hundred surviving
spacecraft, all of which must be kept organized in effective
groups that will collect science data and make decisions as
to which asteroids warrant further investigation.

2.2.2 Emergent Behavior

In swarm-based systems, a group of interacting agents (of-
ten homogeneous or near homogeneous) are developed to
take advantage of their emergent behavior. In these sys-
tems, each of the agents is given certain parameters that it
tries to maximize. Intelligent swarms [1] involve the use of
swarms of simple intelligent agents. Swarms have no cen-
tral controller: they are self-organizing based on the emer-
gent behaviors of the simple interactions. There is no ex-
ternal force directing their behavior and no one agent has a
global view of the intended macroscopic behavior. Though
current NASA swarm missions are not true swarms as de-
scribed above, they do have many of the same attributes
and may exhibit emergent behavior. In addition, there are
a number of government projects that are looking at true
swarms to accomplish complex missions.

2.2.3 Autonomy

Autonomous operation is essential for the success of the
ANTS mission. Round trip communications delays of up
to 40 minutes, and limited bandwidth on communications
links with Earth, mean that control from the ground is im-
possible. The data concerning a swarm emergency situa-
tion (e.g., a projected collision between a spacecraft and



an asteroid or between two spacecraft in the swarm) would
already be stale and effectively unusable when finally re-
ceived by ground control personnel. Furthermore, the actual
swarm situation would likely have changed so much after
the additional signal propagation delay on any instructions
transmitted back to the swarm that the attempt by ground
control to handle the emergency would be invalid and inef-
fective.

Autonomy implies an absence of centralized control. In-
dividual ANTS spacecraft will operate autonomously under
the control of that subgroup’s ruler. That ruler will itself au-
tonomously make decisions regarding asteroids of interest,
and formulate plans for continuing the mission of collect-
ing science data. The success of the mission is predicated
on the validity of the plans generated by the rulers, and re-
quires that the rulers generate sensible plans that will collect
valid science data, and then make valid informed decisions.

That autonomy is possible is not in doubt. What is in
doubt is that autonomous systems can be relied upon to op-
erate correctly, in particular in the absence of a full and
complete specification of what is required of the system.
Our goal is to address this crucial issue.

2.2.4 Testing and Verification

One of the most challenging aspects of using swarms is how
to verify that the emergent behavior of such systems will
be proper and that no undesirable behaviors will occur. In
addition to emergent behavior in swarms, a large number of
concurrent interactions occur between the agents that make
up the swarms. These interactions can also contain errors,
such as race conditions, that are very difficult to detect until
they occur. Once they do occur, it can also be very difficult
to recreate the errors, since they are usually data and time
dependent.

3 Some Potentially Useful Techniquess

3.1 Autonomicity

Autonomy may be considered as having the properties
of self-governance and self-driven-ness, i.e., control over
one’s goals. Autonomicity is having the ability to self-
manage through properties such as self-configuring, self-
healing, self-optimizing, and self-protecting [4, 10, 14].
These are achieved through other self-properties such as
self-awareness (including environment awareness), self-
monitoring, and self-adjusting [15].

Increasingly, self-management is seen as the only viable
way forward to cope with the ever increasing complexity
of systems. From one perspective, self-management may
be considered a specialization of self-governance, i.e., au-
tonomy where the goals/tasks are specific to management

roles [16]. Yet from the wider context, an autonomic ele-
ment (AE), consisting of an autonomic manager and man-
aged component, may still have its own specific goals, but
also additional responsibility of management tasks, in par-
ticular to the wider system environment.

It is envisaged that in an autonomic environment, the
AEs communicate to ensure a managed environment that
is reliable and fault tolerant and meets high level specified
policies (with an overarching vision of system-wide policy-
based self-management). This may result in AEs moni-
toring or “watching out for” other AEs. In terms of au-
tonomy and the concern of undesirable emergent behavior,
an environment that dynamically and continuously moni-
tors can assist in detecting race conditions and reconfig-
uring to avoid damage (self-protecting, self-healing, self-
configuring, etc.). As such, Autonomicity becoming main-
stream in the industry can only assist to improve techniques,
tools, and processes for autonomy [14].

3.2 Hybrid Formal Methods

To overcome the complexity and many other issues in de-
veloping future NASA missions, formal specification tech-
niques and formal verification will need to play vital roles.
NASA is currently investigating the use of formal meth-
ods and formal techniques for verification and validation of
these classes of mission. The primary role of formal meth-
ods will be in the specification and analysis of forthcoming
missions, with a further role in software assurance and proof
of correctness of the behavior of a swarm, whether or not
this behavior is emergent (as a result of composing a num-
ber of interacting entities, producing behavior that was not
foreseen). Formal models derived may also be used as the
basis for automating the generation of much of the code for
the mission [8]. A current project, Formal Approaches to
Swarm Technologies (FAST), is investigating the require-
ments of appropriate formal methods for use in such mis-
sions, and is beginning to apply these techniques to speci-
fying and verifying parts of the ANTS mission.

Hybrid, or integrated, formal approaches have been very
popular in specifying concurrent and agent-based systems.
No doubt this is due to the monolithic systems that most for-
mal methods were developed to specify and verify. Hybrid
approaches often combine a process algebra or logic-based
approach with a model-based approach. The process alge-
bra or logic-based approach allows for easy specification of
concurrent systems, while the model-based approach pro-
vides strength in specifying the algorithmic part of a sys-
tem.

As part of the FAST project, new hybrid formal methods
are being investigated to address complex NASA missions
including swarms.



3.3 Automatic Programming

For many years, automatic programming has referred,
primarily, to the use of very high-level languages to de-
scribe solutions to problems, which could then be translated
down and expressed as code in more familiar programming
languages. Parnas [11] implies that the term is glamorous,
rather than having any real meaning, precisely because it is
the solution that is being specified,rather than the problem
that must be solved.

Autonomous and autonomic systems, exhibiting com-
plex emergent behavior cannot, in general, be fully specified
at the outset. The roles and behaviors of the system will
vary greatly over time. While we may try to write speci-
fications in such a manner that constrain the system, it is
clear that not all behavior can be specified in advance. This
is particularly true of systems exhibiting self-management
The classes of system we are discussing will often require
code to be generated, or modified, during execution. Con-
sequently, automatic code generation will be required.

Several tools already exist that successfully generate
code from a given model. Unfortunately, many of these
tools have been demonstrated to generate code, portions of
which are never executed, or portions of which cannot be
justified from either the requirements or the model. More-
over, existing tools do not and cannot overcome the funda-
mental inadequacy of all currently available automated de-
velopment approaches, which is that they include no means
to establish a provable equivalence between the require-
ments stated at the outset and either the model or the code
they generate. That is why, we believe, future approaches to
automatic code generation, in particular for autonomic sys-
tems, must be based on Formal Requirements-Based Pro-
gramming.

3.4 Formal Requirements Based Programming

Requirements-Based Programming refers to the devel-
opment of complex software (and other) systems, where
each stage of the development is fully traceable back to the
requirements given at the outset.

Requirements-Based Programming ensures that there is
a direct mapping from requirements to design, and that this
design (model) may then be used as the basis for automatic
code generation. In fact, Formal Requirements-Based Pro-
gramming, coupled with a graphical representation for sys-
tem requirements (e.g., UML use cases) possesses the fea-
tures and advantages of a visual formalism described by
Harel [5].

R2D2C, or Requirements-to-Design-to-Code [7, 12], is
a NASA patent-pending approach to Requirements-Based
Programming. In R2D2C, engineers (or others) may write
specifications as scenarios in constrained (domain-specific)

natural language, or in a range of other notations (includ-
ing UML use cases). These will be used to derive a formal
model that is guaranteed to be equivalent to the require-
ments stated at the outset, and which will subsequently be
used as a basis for code generation.

R2D2C is unique in that it allows for full formal devel-
opment from the outset, and maintains mathematical sound-
ness through all phases of the development process, from
requirements through to automatic code generation.

3.5 Tool support

John Rushby [13] argues that tools are not the most im-
portant thing about formal methods, they are the only im-
portant thing about formal methods. Although we can sym-
pathize, we do not support such an extreme viewpoint. For-
mal methods would not be practical without suitable repre-
sentation notations, proof systems (whether automated and
supported by tools, or not), a user community, and evidence
of successful application.

We do agree, however, that tool support is vital, and not
just for formal methods. Structural design methods “took
off” when they were “standardized”, in the guise of UML.
But it was only with the advent of tool support for UML that
it became widely used. The situation is analogous to high
level programming languages: while the community was
well convinced of their benefits, it was only with the avail-
ability of commercial compilers that they became widely
used.

Tools are emerging for the development of complex
agent-based systems such as Java-based Aglets and tools
for autonomic systems. For automatic code generation and
formal Requirements-Based Programming to be practical,
the development community will need commercial-quality
tools. Similarly, the autonomic management of complex
systems will require adequate tool support.

4 Conclusion

We have re-iterated several problems facing the soft-
ware development community. Unfortunately, while well
known for many decades, these issues still prevail. More
importantly, new classes of systems—namely complex,
highly-distributed autonomous systems and their autonomic
management—will pose many other challenges, which yet
remain unaddressed.

We have described one concept system that exemplifies
forthcoming classes of complex autonomous systems that
NASA, and others, are developing. These pose hereto un-
foreseen problems and raise issues that have not been well-
addressed by the community. We have mentioned some
techniques under development by NASA that may be fruit-
ful in addressing these problems.



Acknowledgements

This work is funded in part by the NASA Office of Safety
and Mission Assurance, under its Software Assurance Re-
search Program project Formal Approaches to Swarm Tech-
nologies (FAST), administered by the NASA IV&V Facil-
ity; by the Office of Technology Transfer, NASA Goddard
Space Flight Center; by the NASA Software Engineering
Laboratory, NASA Goddard Space Flight Center; and the
University of Ulster Centre for Software Process Technolo-
gies (CSPT), funded by Invest NI through the Centres of
Excellence Programme under the European Union Peace II
initiative.

References

[1] G. Beni and J. Want. Swarm intelligence. In Proc. Sev-
enth Annual Meeting of the Robotics Society of Japan,
pages 425–428, Tokyo, Japan, 1989. RSJ Press.

[2] J. P. Bowen and M. G. Hinchey. High-Integrity System
Specification and Design. FACIT Series. Springer-
Verlag, London, UK, 1999.

[3] F. P. Brooks, Jr. No silver bullet: Essence and ac-
cidents of software engineering. IEEE Computer,
20(4):10–19, April 1987.

[4] A. G. Ganek and T. A. Corbi. The dawning of the auto-
nomic computing era. IBM Systems Journal, 42(1):5–
18, 2003.

[5] D. Harel. On visual formalisms. Communications of
the ACM, 31(5):514–530, May 1988.

[6] D. Harel. Biting the silver bullet: Toward a brighter
future for system development. IEEE Computer,
25(1):8–20, January 1992.

[7] M. G. Hinchey, J. L. Rash, and C. A. Rouff. En-
abling requirements-based programming for highly
dependable complex parallel and distributed systems.
In Proc. 1st International Workshop on Distributed,
Parallel and Network Applications (DPNA 2005),
Fukuoka, Japan, 20–22 July 2005. IEEE Computer
Society Press.

[8] M. G. Hinchey, J. L. Rash, and C. A. Rouff. A
formal approach to requirements-based programming.
In Proc. IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems,
ECBS-2005, Greenbelt, Maryland, USA, 4–5 April
2005. IEEE Computer Society.

[9] M. G. Hinchey, J. L. Rash, W. F. Truszkowski, C. A.
Rouff, and R. Sterritt. You can’t get there from here!
problems and potential solutions in developing new
classes of complex systems. In Proc. Eighth Interna-
tional Conference on Integrated Design and Process
Technology (IDPT), Beijing, China, 13–17 June 2005.
The Society for Design and Process Science.

[10] P. Horn. Autonomic computing: IBM’s perspective on
the state of information technology. Technical report,
IBM Corporation, October 15, 2001.

[11] D. L. Parnas. Software aspects for strategic defense
systems. American Scientist, November 1985.

[12] J. L. Rash, M. G. Hinchey, C. A. Rouff, and
D. Gračanin. Formal requirements-based program-
ming for complex systems. In Proc. International
Conference on Engineering of Complex Computer
Systems, Shanghai, China, 16–20 June 2005. IEEE
Computer Society Press.

[13] J. Rushby. Remarks, panel session on the future of
formal methods in industry. In J. P. Bowen and M. G.
Hinchey, editors, Proc. 9th International Conference
of Z Users, LNCS 967, pages 239–241, Limerick, Ire-
land, September 1995. Springer-Verlag.

[14] R. Sterritt. Towards autonomic computing: Effective
event management. In Proc. 27th Annual IEEE/NASA
Software Engineering Workshop (SEW), pages 40–47,
Greenbelt, Maryland, December 2002. IEEE Com-
puter Society.

[15] R. Sterritt and D. W. Bustard. Autonomic
computing—a means of achieving dependability? In
Proc. IEEE International Conference on the Engineer-
ing of Computer Based Systems (ECBS-03), pages
247–251, Huntsville, Alabama, USA, April 2003.
IEEE Computer Society Press.

[16] R. Sterritt and M. G. Hinchey. Why computer based
systems Should be autonomic. In Proc. 12th IEEE In-
ternational Conference on Engineering of Computer
Based Systems (ECBS 2005), pages 406–414, Green-
belt, MD, April 2005.

[17] W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff.
NASA’s swarm missions: The challenge of building
autonomous software. IEEE IT Professional, 6(5):47–
52, September/October 2004.


